Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(20): 6354-6365, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37791530

RESUMO

Due to the emergence of antibiotic resistance, the need to explore novel antibiotics and/or novel strategies to counter antibiotic resistance is of utmost importance. In this work, we explored the molecular and mechanistic details of the degradation of a streptogramin B antibiotic by virginiamycin B (Vgb) lyase of Staphylococcus aureus using classical molecular dynamics simulations and multiscale quantum mechanics/molecular mechanics methods. Our results were in line with available experimental kinetic information. Although we were able to identify a stepwise mechanism, in the wild-type enzyme, the intermediate is short-lived, showing a small barrier to decay to the product state. The impact of point mutations on the reaction was also assessed, showing not only the importance of active site residues to the reaction catalyzed by Vgb lyase but also of near positive and negative residues surrounding the active site. Using molecular dynamics simulations, we also predicted the most likely protonation state of the 3-hydroxypicolinic moiety of the antibiotic and the impact of mutants on antibiotic binding. All this information will expand our understanding of linearization reactions of cyclic antibiotics, which are crucial for the development of novel strategies that aim to tackle antibiotic resistance.


Assuntos
Liases , Virginiamicina , Virginiamicina/química , Virginiamicina/metabolismo , Simulação de Dinâmica Molecular , Liases/metabolismo , Antibacterianos/química , Catálise
2.
Chem Sci ; 14(15): 4126-4133, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063789

RESUMO

Mitochondrial targeting represents an attractive strategy for treating metabolic, degenerative and hyperproliferative diseases, since this organelle plays key roles in essential cellular functions. Triphenylphosphonium (TPP+) moieties - the current "gold standard" - have been widely used as mitochondrial targeting vectors for a wide range of molecular cargo. Recently, further optimisation of the TPP+ platform drew considerable interest as a way to enhance mitochondrial therapies. However, although the modification of this system appears promising, the core structure of the TPP+ moiety remains largely unchanged. Thus, this study explored the use of aminophosphonium (PN+) and phosphazenylphosphonium (PPN+) main group frameworks as novel mitochondrial delivery vectors. The PPN+ moiety was found to be a highly promising platform for this purpose, owing to its unique electronic properties and high lipophilicity. This has been demonstrated by the high mitochondrial accumulation of a PPN+-conjugated fluorophore relative to its TPP+-conjugated counterpart, and has been further supported by density functional theory and molecular dynamics calculations, highlighting the PPN+ moiety's unusual electronic properties. These results demonstrate the potential of novel phosphorus-nitrogen based frameworks as highly effective mitochondrial delivery vectors over traditional TPP+ vectors.

3.
Chemistry ; 28(42): e202201066, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35686565

RESUMO

The influence of the dynamical flexibility of enzymes on reaction mechanisms is a cornerstone in biological sciences. In this study, we aim to 1) study the convergence of the activation free energy by using the first step of the reaction catalysed by HIV-1 protease as a case study, and 2) provide further evidence for a mechanistic divergence in this enzyme, as two different reaction pathways were seen to contribute to this step. We used quantum mechanics/molecular mechanics molecular dynamics simulations, on four different initial conformations that led to different barriers in a previous study. Despite the sampling, the four activation free energies still spanned a range of 5.0 kcal ⋅ mol-1 . Furthermore, the new simulations did confirm the occurrence of an unusual mechanistic divergence, with two different mechanistic pathways displaying equivalent barriers. An active-site water molecule is proposed to influence the mechanistic pathway.


Assuntos
Protease de HIV , Domínio Catalítico , Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Termodinâmica
4.
J Chem Inf Model ; 62(10): 2510-2521, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35549216

RESUMO

Despite the development of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, there is an urgent need for efficient drugs to treat infected patients. An attractive drug target is the human transmembrane protease serine 2 (TMPRSS2) because of its vital role in the viral infection mechanism of SARS-CoV-2 by activation of the virus spike protein (S protein). Having in mind that the information derived from quantum mechanics/molecular mechanics (QM/MM) studies could be an important tool in the design of transition-state (TS) analogue inhibitors, we resorted to adiabatic QM/MM calculations to determine the mechanism of the first step (acylation) of proteolytic cleavage of the S protein with atomistic details. Acylation occurred in two stages: (i) proton transfer from Ser441 to His296 concerted with the nucleophilic attack of Ser441 to the substrate's P1-Arg and (ii) proton transfer from His296 to the P1'-Ser residue concerted with the cleavage of the ArgP1-SerP1' peptide bond, with a Gibbs activation energy of 17.1 and 15.8 kcal mol-1, relative to the reactant. An oxyanion hole composed of two hydrogen bonds stabilized the rate-limiting TS by 8 kcal mol-1. An analysis of the TMPRSS2 interactions with the high-energy, short-lived tetrahedral intermediate highlighted the limitations of current clinical inhibitors and pointed out specific ways to develop higher-affinity TS analogue inhibitors. The results support the development of more efficient drugs against SARS-CoV-2 using a human target, free from resistance development.


Assuntos
Serina Endopeptidases , Glicoproteína da Espícula de Coronavírus , Antivirais , Desenho de Fármacos , Humanos , Proteínas de Membrana , Pandemias , Prótons , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
5.
Biochim Biophys Acta Biomembr ; 1864(3): 183838, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896074

RESUMO

The misuse and overuse of fluoroquinolones in recent years have triggered alarming levels of resistance to these antibiotics. Porin channels are crucial for the permeation of fluoroquinolones across the outer membrane of Gram-negative bacteria and modifications in porin expression are an important mechanism of bacterial resistance. One possible strategy to overcome this problem is the development of ternary copper complexes with fluoroquinolones. Compared to fluoroquinolones, these metalloantibiotics present a larger partition to the lipid bilayer and a more favorable permeation, by passive diffusion, across bacteriomimetic phospholipid-based model membranes. To rule out the porin-dependent pathway for the metalloantibiotics, we explored the permeation through OmpF (one of the most abundant porins present in the outer membrane of Gram-negative bacteria) using a multi-component approach. X-ray studies of OmpF porin crystals soaked with a ciprofloxacin ternary copper complex did not show a well-defined binding site for the compound. Molecular dynamics simulations showed that the translocation of the metalloantibiotic through this porin is less favorable than that of free fluoroquinolone, as it presented a much larger free energy barrier to cross the narrow constriction region of the pore. Lastly, permeability studies of different fluoroquinolones and their respective copper complexes using a porin-mimetic in vitro model corroborated the lower rate of permeation for the metalloantibiotics relative to the free antibiotics. Our results support a porin-independent mechanism for the influx of the metalloantibiotics into the bacterial cell. This finding brings additional support to the potential application of these metalloantibiotics in the fight against resistant infections and as an alternative to fluoroquinolones.


Assuntos
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Fluoroquinolonas/metabolismo , Simulação de Dinâmica Molecular , Porinas/metabolismo , Antibacterianos/química , Ciprofloxacina/química , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , Escherichia coli/metabolismo , Fluoroquinolonas/química , Bicamadas Lipídicas/metabolismo , Porinas/química
6.
J Mol Biol ; 433(9): 166911, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33676927

RESUMO

Fluoroquinolones (FQ) are antibiotics widely used in clinical practise, but the development of bacterial resistance to these drugs is currently a critical public health problem. In this context, ternary copper complexes of FQ (CuFQPhen) have been studied as a potential alternative. In this study, we compared the passive diffusion across the lipid bilayer of one of the most used FQ, ciprofloxacin (Cpx), and its ternary copper complex, CuCpxPhen, that has shown previous promising results regarding antibacterial activity and membrane partition. A combination of spectroscopic studies and molecular dynamics simulations were used and two different model membranes tested: one composed of anionic phospholipids, and the other composed of zwitterionic phospholipids. The obtained results showed a significantly higher membrane permeabilization activity, larger partition, and a more favourable free energy landscape for the permeation of CuCpxPhen across the membrane, when compared to Cpx. Furthermore, the computational results indicated a more favourable translocation of CuCpxPhen across the anionic membrane, when compared to the zwitterionic one, suggesting a higher specificity towards the former. These findings are important to decipher the influx mechanism of CuFQPhen in bacterial cells, which is crucial for the ultimate use of CuFQPhen complexes as an alternative to FQ to tackle multidrug-resistant bacteria.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Membrana Celular/metabolismo , Ciprofloxacina/química , Ciprofloxacina/metabolismo , Cobre/metabolismo , Difusão , Bactérias Gram-Positivas , Cardiolipinas/metabolismo , Membrana Celular/química , Cobre/química , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Fosfatidilgliceróis/metabolismo , Prótons , Termodinâmica
7.
RSC Chem Biol ; 2(6): 1643-1650, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34977579

RESUMO

Triphenylphosphonium (TPP+) moieties are commonly conjugated to drug molecules to confer mitochondrial selectivity due to their positive charge and high lipophilicity. Although optimisation of lipophilicity can be achieved by modifying the length of the alkyl linkers between the TPP+ moiety and the drug molecule, it is not always possible. While methylation of the TPP+ moiety is a viable alternative to increase lipophilicity and mitochondrial accumulation, there are no studies comparing these two separate modular approaches. Thus, we have systematically designed, synthesised and tested a range of TPP+ molecules with varying alkyl chain lengths and degree of aryl methylation to compare the two modular methodologies for modulating lipophilicity. The ability of aryl/alkyl modified TPP+ to deliver cargo to the mitochondria was also evaluated by confocal imaging with a TPP+-conjugated fluorescein-based fluorophore. Furthermore, we have employed molecular dynamics simulations to understand the translocation of these molecules through biological membrane model systems. These results provide further insights into the thermodynamics of this process and the effect of alkyl and aryl modular modifications.

8.
RSC Adv ; 11(2): 899-908, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35423709

RESUMO

The number of hydrogen bond donors and acceptors is a fundamental molecular descriptor to predict the oral bioavailability of small drug candidates. In fact, the most widely used oral bioavailability rules (such as the Lipinsky's rule-of-five and the Veber rules) make use of this molecular descriptor. It is generally assumed that hydrogen bond donors and acceptors impact on passive diffusion across cell membranes, a fundamental event during drug absorption and distribution. Although the relationship between the number of these motifs and the probability of having good oral bioavailability has been studied and described for more than 20 years, little attention has been given to their spatial distribution in the molecule. In this paper, we used molecular dynamics to describe the effect of intramolecular hydrogen bonding on the passive diffusion of a small drug (piracetam) through a lipid membrane. The results indicated that the formation of an intramolecular hydrogen bond decreases the barrier for translocation by ca. 4 kcal mol-1 and increases the permeability of the tested molecule, partially compensating the desolvation penalty arising from the penetration of the drug into the biological membrane core. This effect was apparent in simulations where the formation of this interaction was prevented with the help of modified potentials, and in simulations with a similar compound to piracetam that was not able to form this intramolecular hydrogen bond due to a larger distance between the hydrogen bond donor and acceptor groups. These results were also supported by coarse-grained methods, which are becoming an important resource for sampling a larger chemical space of molecules, with reduced computational effort. Furthermore, entropy and enthalpy derived profiles were also obtained as the compounds translocated across the membrane, suggesting that, even though the process of formation of internal hydrogen bonds is entropically unfavorable, the enthalpic gain is such that the formation of these interactions is beneficial for the passive diffusion across cell membranes.

9.
Inorg Chem ; 58(13): 8293-8299, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31184865

RESUMO

Triphenylphosphonium (TPP+) species comprising multiple charges, i.e., bis-TPP+, are predicted to be superior mitochondrial-targeting vectors and are expected to have mitochondrial accumulations 1000-fold greater than TPP+, the current "gold standard". However, bis-TPP+ vectors linked by short hydrocarbon chains ( n < 5) are unable to be taken up by the mitochondria, thus hindering their development as mitochondrial delivery vectors. Through the incorporation of methylated TPP+ moieties (T*PP+), we successfully enabled the accumulation of bis-TPP+ with a short linker chain in isolated mitochondria, as measured by high performance liquid chromatography. These experimental results are further supported by molecular dynamics and ab initio calculations, revealing the strong correlations between mitochondria uptake and molecular volume, surface area, and chemical hardness. Most notably, the molecular volume has been shown to be a strong predictor of accumulation for both mono- and bis-TPP+ salts. Our study underscores the potential of T*PP+ moieties as alternative mitochondrial vectors to overcome low permeation into the mitochondria.


Assuntos
Mitocôndrias/metabolismo , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo , Transporte Biológico , Teoria da Densidade Funcional , Células HeLa , Humanos , Modelos Químicos , Simulação de Dinâmica Molecular , Estrutura Molecular , Oniocompostos/síntese química , Oniocompostos/química , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Relação Quantitativa Estrutura-Atividade , Termodinâmica
10.
J Mol Model ; 25(6): 172, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31129727

RESUMO

The potential of hydroxypyridinones for in vivo iron sequestration, in both biological and medical contexts, has been extensively discussed in the literature. Different chelators can be designed, with distinct lipophilicities that should alter their cell permeability, distribution, and rates of metabolism. However, for effective iron scavenging in biological systems, the redox potential and binding affinity of iron must fall within a proper range. Our objective was to assess the impact of different hydroxypyridinone chelators in 3:1 iron(III) complexes through comparison of these thermodynamic properties. For that purpose, we employed a cluster-continuum approach using density functional theory, on a dataset of 25 iron complexes. Whenever possible, our results were compared with experimental stability constants (log ß) and with electrode potentials. We observed a good qualitative agreement between computed free energies of binding and log ß values. In addition, we described which substitutions to the 3-hydroxypyridin-4-one ring should not markedly affect the redox properties and metal ion affinity considering iron. Graphical abstract Iron complexes of hydroxypyridinones.


Assuntos
Ferro/química , Modelos Moleculares , Piridinas/química , Algoritmos , Teoria da Densidade Funcional , Interações Hidrofóbicas e Hidrofílicas , Ferro/metabolismo , Ligantes , Conformação Molecular , Estrutura Molecular , Oxirredução , Piridinas/metabolismo
12.
Phys Chem Chem Phys ; 20(32): 20927-20942, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30067268

RESUMO

The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking.


Assuntos
Simulação de Acoplamento Molecular , Proteínas/química , Algoritmos , Sítios de Ligação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Termodinâmica
13.
J Inorg Biochem ; 186: 95-102, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29860209

RESUMO

Understanding the effect of glycation on the function of transferrin, the systemic iron transporter, is fundamental to fully grasp the mechanisms leading to the loss of iron homeostasis observed in diabetes mellitus (DM). The spontaneous reaction with protein amino groups is one of the main causes of glucose toxicity, but the site specificity of this reaction is still poorly understood. Here in, an in vitro approach was used to study human holo-transferrin glycation in detail. Lysine residues 103, 312 and 380 proved to be the most reactive sites, and overall glycation specificity was found to be remarkably different from that described for apo-transferrin. A computational biochemistry approach was subsequently applied to rationalize lysine reactivity. Even though pKa values, solvent accessible surface area, hydrogen bonds or the presence of nearby charged/polar residues could be related to lysine reactivity, these parameters do not suffice to describe glycation site specificity in holo-transferrin. Furthermore, analysis of the most reactive residues suggests that the correct lysine side chain orientation may play a fundamental role in reactivity. Nevertheless, in holo-transferrin, glycation occurs away from the iron-binding sites and, despite the observed iron release, the modification of apo-transferrin should play a more relevant role for the loss of iron-binding capacity observed in the blood serum of DM patients.


Assuntos
Ferro/química , Modelos Moleculares , Transferrina/química , Sítios de Ligação , Diabetes Mellitus/metabolismo , Glicosilação , Humanos , Ferro/metabolismo , Transferrina/metabolismo
14.
RSC Adv ; 8(48): 27081-27090, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35539964

RESUMO

The class of 3-hydroxy-4-pyridinone ligands is widely known and valuable for biomedical and pharmaceutical purposes. Their chelating properties towards biologically-relevant transition metal ions highlight their potential biomedical utility. A set of 3-hydroxy-4-pyridinone Zn(ii) complexes at different concentrations was studied for their ability to interact with lipid phases. We employed umbrella sampling simulations to attain the potential-of-mean force for a set of ligands and one Zn(ii) complex, as these permeated a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) hydrated bilayer system. In addition, we used conventional molecular dynamics simulations to study the behavior of various Zn(ii) complexes in hydrated bilayer systems. This work discusses: (i) the partition of 3-hydroxy-4-pyridinone ligands to bilayer phases; (ii) self-aggregation in crowded environments of Zn(ii) complexes; and (iii) possible mechanisms for the membrane translocation of Zn(ii) complexes. We observed distinct interactions for the studied complexes, and distinct membrane partition coefficients (K mem) depending on the considered ligand. The more hydrophobic ligand, 1-hexyl-3-hydroxy-2-methyl-4(1H)-pyridinone, partitioned more favorably to lipid phases (at least two orders of magnitude higher K mem when compared to the other ligands), and the corresponding Zn(ii) complex was also prone to self-aggregation when an increased concentration of the complex was employed. We also observed that the inclusion of a coordinated water molecule in the parameterization of the Zn(ii) coordination sphere, as proposed in the available crystallographic structure of the complex, decreased the partition coefficient and membrane permeability for the tested complex.

15.
J Chem Theory Comput ; 13(5): 2290-2299, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28388088

RESUMO

We discuss potential-of-mean force convergence issues involving the methods for generating starting structures of umbrella sampling simulations for the study of the water-bilayer permeation of drug-like compounds. We provide a proof of concept of the benefits of potential-energy modification methods, in particular the flooding technique, to enhance the sampling and improve the convergence of the potential-of-mean force. In addition, we also discuss how these potential modifiers could introduce the necessary bias to induce the correct description of other relevant internal degrees of freedom for the compounds, thus providing a more accurate description of the permeation process. Effective methodological approximations are taken into consideration, more specifically the inclusion of atomic polarization, and experimental data are used in the validation of computed values whenever possible. The parametrization of the atomic point charges is always a relevant issue in biomolecular simulations. We discuss the influence of a molecule's conformation-dependent atomic point charges and their impact on the predicted potential-of-mean force.

16.
J Chem Inf Model ; 57(1): 60-72, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-27936711

RESUMO

Knowing how proteins make stable complexes enables the development of inhibitors to preclude protein-protein (P:P) binding. The identification of the specific interfacial residues that mostly contribute to protein binding, denominated as hot spots, is thus critical. Here, we refine an in silico alanine scanning mutagenesis protocol, based on a residue-dependent dielectric constant version of the Molecular Mechanics/Poisson-Boltzmann Surface Area method. We have used a large data set of structurally diverse P:P complexes to redefine the residue-dependent dielectric constants used in the determination of binding free energies. The accuracy of the method was validated through comparison with experimental data, considering the per-residue P:P binding free energy (ΔΔGbinding) differences upon alanine mutation. Different protocols were tested, i.e., a geometry optimization protocol and three molecular dynamics (MD) protocols: (1) one using explicit water molecules, (2) another with an implicit solvation model, and (3) a third where we have carried out an accelerated MD with explicit water molecules. Using a set of protein dielectric constants (within the range from 1 to 20) we showed that the dielectric constants of 7 for nonpolar and polar residues and 11 for charged residues (and histidine) provide optimal ΔΔGbinding predictions. An overall mean unsigned error (MUE) of 1.4 kcal mol-1 relative to the experiment was achieved in 210 mutations only with geometry optimization, which was further reduced with MD simulations (MUE of 1.1 kcal mol-1 for the MD employing explicit solvent). This recalibrated method allows for a better computational identification of hot spots, avoiding expensive and time-consuming experiments or thermodynamic integration/ free energy perturbation/ uBAR calculations, and will hopefully help new drug discovery campaigns in their quest of searching spots of interest for binding small drug-like molecules at P:P interfaces.


Assuntos
Alanina , Simulação de Dinâmica Molecular , Mutagênese , Proteínas/genética , Proteínas/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/química , Solventes/química , Termodinâmica
17.
Phys Chem Chem Phys ; 17(4): 2378-87, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25490550

RESUMO

Protein-protein (P-P) 3D structures are fundamental to structural biology and drug discovery. However, most of them have never been determined. Many docking algorithms were developed for that purpose, but they have a very limited accuracy in generating native-like structures and identifying the most correct one, in particular when a single answer is asked for. With such a low success rate it is difficult to point out one docked structure as being native-like. Here we present a new, high accuracy, scoring method to identify the 3D structure of P-P complexes among a set of trial poses. It incorporates alanine scanning mutagenesis experimental data that need to be obtained a priori. The scoring scheme works by matching the computational and the experimental alanine scanning mutagenesis results. The size of the trial P-P interface area is also taken into account. We show that the method ranks the trial structures and identifies the native-like structures with unprecedented accuracy (∼94%), providing the correct P-P 3D structures that biochemists and molecular biologists need to pursue their studies. With such a success rate, the bottleneck of protein-protein docking moves from the scoring to searching algorithms.


Assuntos
Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Ligação Proteica , Software
18.
J Phys Chem B ; 118(50): 14590-601, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25482538

RESUMO

The dynamics and interaction of 3-hydroxy-4-pyridinone fluorescent iron chelators, exhibiting antimicrobial properties, with biological membranes were evaluated through NMR and molecular dynamics simulations. Both NMR and MD simulation results support a strong interaction of the chelators with the lipid bilayers that seems to be strengthened for the rhodamine containing compounds, in particular for compounds that include ethyl groups and a thiourea link. For the latter type of compounds the interaction reaches the hydrophobic core of the lipid bilayer. The molecular docking and MD simulations performed for the potential interaction of the chelators with DC-SIGN receptors provide valuable information regarding the cellular uptake of these compounds since the results show that the fluorophore fragment of the molecular framework is essential for an efficient binding. Putting together our previous and present results, we put forward the hypothesis that all the studied fluorescent chelators have access to the cell, their uptake occurs through different pathways and their permeation properties correlate with a better access to the cell and its compartments and, consequently, with the chelators antimicrobial properties.


Assuntos
Anti-Infecciosos/química , Moléculas de Adesão Celular/química , Membrana Celular/química , Quelantes de Ferro/química , Lectinas Tipo C/química , Receptores de Superfície Celular/química , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Quelantes de Ferro/metabolismo , Lectinas Tipo C/metabolismo , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Conformação Proteica , Piridonas/química , Piridonas/metabolismo , Receptores de Superfície Celular/metabolismo , Rodaminas/química , Rodaminas/metabolismo , Relação Estrutura-Atividade
19.
Phys Chem Chem Phys ; 16(39): 21768-77, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25197978

RESUMO

We report on the viability of breaking selected bonds in biological systems using tailored electromagnetic radiation. We first demonstrate, by performing large-scale simulations, that pulsed electric fields cannot produce selective bond breaking. Then, we present a theoretical framework for describing selective energy concentration on particular bonds of biomolecules upon application of tailored electromagnetic radiation. The theory is based on the mapping of biomolecules to a set of coupled harmonic oscillators and on optimal control schemes to describe optimization of temporal shape, the phase and polarization of the external radiation. We have applied this theory to demonstrate the possibility of selective bond breaking in the active site of bacterial DNA topoisomerase. For this purpose, we have focused on a model that was built based on a case study. Results are given as a proof of concept.


Assuntos
DNA Topoisomerases Tipo I/química , Escherichia coli/enzimologia , Domínio Catalítico , DNA Topoisomerases Tipo I/metabolismo , Campos Eletromagnéticos , Modelos Moleculares , Conformação Proteica
20.
Biochem J ; 461(1): 33-42, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24716439

RESUMO

The mechanisms involving iron toxicity in diabetes mellitus are not completely understood. However, the spontaneous reaction of reducing sugars with protein amino groups, known as glycation, has been shown to compromise the action of Tf (transferrin), the systemic iron transporter. In order to understand the structural alterations that impair its function, Tf was glycated in vitro and the modification sites were determined by MS. Iron binding to glycated Tf was assessed and a computational approach was conducted to study how glycation influences the iron-binding capacity of this protein. Glycated Tf samples were found to bind iron less avidly than non-modified Tf and MS results revealed 12 glycation sites, allowing the establishment of Lys534 and Lys206 as the most vulnerable residues to this modification. Their increased susceptibility to glycation was found to relate to their low side-chain pKa values. Lys534 and Lys206 participate in hydrogen bonding crucial for iron stabilization in the C- and N-lobes of the protein respectively, and their modification is bound to influence iron binding. Furthermore, the orientation of the glucose residues at these sites blocks the entrance to the iron-binding pocket. Molecular dynamics simulations also suggested that additional loss of iron binding capacity may result from the stereochemical effects induced by the glycation of lysine residues that prevent the conformational changes (from open to closed Tf forms) required for metal binding. Altogether, the results indicate that Tf is particularly vulnerable to glycation and that this modification targets spots that are particularly relevant to its function.


Assuntos
Glicemia/metabolismo , Índice Glicêmico/fisiologia , Transferrina/antagonistas & inibidores , Transferrina/fisiologia , Regulação para Cima/fisiologia , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Biomarcadores/sangue , Glicosilação , Humanos , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...